Utilizing Spectrophotometers to Measure Color Change in Iron-Fortified Food Products

color change
Iron fortification can be vital to protecting public health but can also present formulation challenges, as iron compounds can produce unwanted color change.
Image Source: Pexels user stock.tookapic.com

Iron deficiency is the most prevalent nutritional disorder in the world, affecting one out of four people. In developing countries the rate is drastically higher, topping 50% amongst pregnant women and young children.1 Although iron deficiency is less common in Western nations, it remains a significant health concern for vulnerable individuals and groups. In the United States alone, 2.4 million children are affected by iron deficiency along with 15-25% of pregnant women.2

Because iron is not synthesized by the body, it must be obtained via diet or supplementation. Although certain foods such as red meat, poultry, beans, and pork are naturally iron-rich, regional scarcity and economic barriers to accessing these food sources leaves billions around the world with inadequate iron intake, which can cause serious damage to physical, cognitive, and behavioral health. Indeed, the World Health Organization considers iron deficiency as “being among the world’s most serious health risk factors.”3 As such, iron fortification of food products like breads, cereals, dairy, and infant formulas is critical to increasing the availability of dietary iron and addressing iron deficiency as a public health concern.

In the United States, fortification began in the 1930s and is now standard within many food manufacturing practices, particularly as increasingly health-conscious consumers seek to optimize nutritional intake.4 In the developing countries without the food security and lengthy history of food enhancement enjoyed in the United States, iron fortification is increasingly vital and offers a “sustainable and low-cost effective approach” to combatting iron deficiency.5  The extraordinary efficacy of fortification has led several countries with high deficiency rates to implement mandatory fortification laws and international public health experts regard iron fortification as a critical measure in many regions. As demand for iron-fortified foods grows throughout the world and becomes ever-more vital to public health strategies, spectrophotometers can play a central role in the formulation and production of these innovative food products.

READ  Using Spectral Analysis to Determine Formaldehyde Content in Wet Market Seafood Products
color change
Iron fortificants can cause unsightly greying of chocolate.
Image Source: Pexels user Karolina Grabowska

Color Change in Fortified Foods

One of the primary challenges to the iron fortification process is introducing fortificants without disturbing the sensory characteristics of the food. As noted in Cereal Chemistry,”One of the initial hurdles to overcome in any fortification program is consumer acceptance stemming from sensory effects. For a fortification program to be successful, it is important that the combination of the fortificant and the vehicle are acceptable to the target population.”6 Unwanted color change as the result of fortification is a significant problem for food manufacturers and can impede consumer acceptance of fortified products, hindering commercial success and compromising the efficacy of public health efforts. Iron compounds are particularly prone to producing undesirable and unpredictable color shifts as the result of their interactions with raw ingredients, response to processing methods, and reaction to oxidation; common types of discoloration include “a green or bluish coloration in cereals, a greying of chocolate and cocoa, and darkening of salt to yellow or red/brown.”7 Formulating appealing food products that balance enhanced iron bioavailability with minimal color change depends on thoughtful selection of fortificants, raw ingredients, and processing methods to ensure consumer satisfaction.

measure color change
Spectrophotometers allow you to objectively compare the impact of iron compounds and select the best fortificant for your product.
Image Source: Pexels user David Skyrius


Using Spectral Analysis to Measure Color Change and Perfect Fortification

Spectral analysis expands your ability to produce fortified foods that replicate their non-fortified counterparts as closely as possible by providing a precise, objective method of identifying and assessing color change caused by iron compounds. Through spectral measurement, you can quickly quantify and compare the impact of fortificants, correlate ingredient and processing variables to degree of color change, and evaluate color stability in response to stressors to refine formulation. Once a recipe is in production, in-line, non-contact spectrophotometers can continuously monitor color to ensure consistent and accurate coloration by providing ongoing spectral feedback and instantly alert operators to color variations that fall outside your specifications. The remarkable versatility, accuracy, and flexibility of spectrophotometers allow for highly accurate chromatic evaluation of all types of food products — solid or liquid, opaque or transparent, smooth or textured—and optimizes the success of individual food products while enhancing the potential of fortification programs as a whole.

READ  Citrus Color Measurement: Accurate and Portable Analysis Made Easy with Spectrophotometers

HunterLab Instrumentation

HunterLab has been a leader in the field of color measurement for over 60 years. Our instruments were designed in response to the exacting needs of our customers and have been chosen by researchers and food manufacturers alike to evaluate, improve, and monitor iron-fortified foods around the world. With a diverse range of portable, benchtop, and in-line spectrophotometers to choose, we provide the highest quality instrumentation for both laboratory and factory use. Contact us to learn more about what we have to offer.

  1. “Iron,” http://www.unicef.org/nutrition/23964_iron.html
  2. “Iron Deficiency in Early Childhood in the United States: Risk Factors and Racial/Ethnic Disparities,” September 2007, http://www.ncbi.nlm.nih.gov/pubmed/17766530
  3. “Food Fortification,” 2011, http://cmj.sljol.info/article/10.4038/cmj.v56i3.3607/galley/2908/download
  4. “The History of Food Fortification in the United States: Its Relevance for Current Fortification Efforts in Developing Countries”, October 2002, “http://web1.sph.emory.edu/users/hpacho2/PartnershipsMaize/Bishai_2002.pdf
  5. “Control of Iron Deficiency in Developing Countries,” January-March 2002, http://www.ncbi.nlm.nih.gov/pubmed/11943635
  6. “Effect of Iron Source on Color and Appearance of Micronutrient-Fortified Corn Flour Tortillas,” July-August 2008, http://www.sustaintech.org/publications/TF/CCHEM_Effect%20Fe%20Source%20on%20Color%20Micronu-Fortified%20Corn%20Flour%20Tortillas_2008.pdf
  7. “Guidelines on Food Fortification With Micronutrients,” 2006, http://www.who.int/nutrition/publications/guide_food_fortification_micronutrients.pdf

Leave a Reply

Your email address will not be published.

Time limit is exhausted. Please reload CAPTCHA.