Spectrophotometric Evaluation of Honey Color Helps Boost Appeal
The color of honey can have a significant impact on consumer perception. | Image Source: Unsplash user Sonja Langford

It’s not often that the intrigue and specter of criminal activity enter the honey world. However, when it comes to manuka honey, it’s a different story. Manuka honey, derived from the manuka tree, is one of the rarest and valuable kinds of honey in the world. Renowned for its touted medicinal properties and rich, complex flavor, manuka honey fetches significantly higher prices than standard honey, spurring the emergence of a global counterfeiting industry.

 

Approximately 1,700 tons of manuka honey are produced annually in New Zealand, “representing almost all the world’s production.” Yet 10,000 tons of honey product labeled as manuka is being sold each year around the world, with 1,800 of those tons sold in the UK alone.1 The problem has become so widespread that specialized testing methodologies have now been developed to differentiate between true manuka honey and counterfeit or adulterated versions.2 These authentication methods have the potential to save the honey industry (and consumers) millions of dollars each year. But until global implementation of such testing is realized, large-scale counterfeiting is likely to continue.

 

The primary way manuka consumers seek to identify manuka honey is by color. The product is known for its creamy to dark brown hues, hinting at its strong, distinctive flavor. As such, replicating this color is imperative to passing off counterfeits as the real deal. This may be done using a variety of methods, including adding syrups or other colorants to lighter kinds of honey to approximate the distinctive appearance of manuka. It is perhaps the strongest example of how valuable honey color can be and why color standards matter.

 

 

A Matter of Color

 

Manuka honey is not the only honey customers primarily evaluate based on color. In fact, honey color is perhaps the most important variable in guiding consumer choices, as it ostensibly hints at the flavor one can expect from the product. As Aubert and Gonnet wrote as early as 1986, “A very dark-colored honey is suggestively associated with a very flavored product, while a light-colored honey suggests more subtle and refined fragrances.”3 However, these assumptions are not always consistent. Indeed, “The link between the color and flavor of honey is often accidental.”

 

Despite the accidental nature of this link, consumers tend to have strong preferences when it comes to honey color. These are the result of both individual and cultural tastes. For example, American consumers tend to prefer lighter colored honeys while German, Swiss, and Austrians often prefer darker varieties.4 This, however, may be changing with the emergence of artisanal honeys and increased interest in rare and novel food products.5 Additionally, while color is not a perfect predictor of flavor, it can be an important indictor of quality. Color that deviates from expectations may indicate the intentional or unintentional addition of additives, processing errors, or contamination.

 

Honey can range from the palest white to rich amber. | Image Source: Pexels user Pixabay

The Honey Color Scale

 

In order to evaluate honey color in a standardized way, the USDA has developed a specialized classification system consisting of seven categories, ranging from water white to dark amber.6 This color scale is used across the industry to help producers determine whether their honey is meeting aesthetic expectations as well as allowing for meaningful comparisons between product appearances. While honey color does not factor into USDA quality grading, it is an important tool for honey producers as they seek to create aesthetically desirable products that meet the demands of today’s consumers.

 

Traditionally, the color of honey has been evaluated using a Pfund color grader, a glass wedge whose color ranges from light to dark. “The honey is placed in a wedge-shaped container and compared to the scale, and the place where the color matches is measured from one end of the wedge.”7 Today, a number of companies offer their own color grading apparatuses that also rely on visual comparison of honey to color samples. These methods are inherently subjective, as factors such as ambient light, perceptual differences between observers, and even slight color variations in color grading equipment can interfere with an accurate assessment.

honey in jars
Customers in different geographic locations have different honey preferences. Image Credit: Flickr User Jason Reidy

 

Toward Objective Honey Color Analysis

 

In order to overcome the challenges posed by visual inspection, an increasing number of honey producers are turning to spectrophotometric analysis. These high-tech instruments allow you to capture objective color information to accurately determine a product’s place on the honey color scale. Additionally, this precise data may be used to ensure batch-to-batch consistency, guaranteeing that each product is of similar quality.

 

The versatile optical geometries of spectrophotometers mean that they are capable of analyzing the appearance of both liquid and solid kinds of honey. Additionally, the ability to capture both transmitted and reflected color means that spectrophotometric instrumentation makes it possible to analyze a full product range at every step of manufacturing with the same instrument. As Rachel Stothard writes, “Having a machine that can accommodate both measurements means quality analysis can be as versatile as the product.”[“How to Measure the Color of Honey”, July 16, 2015, http://www.colourmeasure.com/knowledge-base/2015-07-16-how-to-measure-the-colour-of-honey]

 

But spectrophotometers also allow you to go beyond color measurement. In addition to hue, the clarity of honey is one of the primary determinants of both visual appeal and product quality. In fact, clarity accounts for 10% of the USDA’s quality rating of filtered honey. The current classification system is based on “the apparent transparency or clearness of honey to the eye and to the degree of freedom from air bubbles, pollen grains, or other fine particles of any materials suspected in the product.” By integrating haze measurement in honey quality assessment, producers can easily determine product clarity. This information can be invaluable in identifying problematic process variables as well as evaluating new process variables as you seek to improve clarity. Today’s sophisticated spectrophotometers allow you to capture both haze and color measurement with a single instrument and even with a single measurement.

 

HunterLab Quality

 

HunterLab has been a pioneer in the field of color measurement for over 60 years. Today, we offer a comprehensive range of fine spectrophotometric instruments designed to help our customers obtain the critical data they need to evaluate the quality of their products and optimize consumer appeal. Our analytical tools provide simple and accurate methods for determining honey color and haze in a variety of user-friendly formats. Contact us to learn more about our innovative spectrophotometers, customizable software packages, and world-class customer support services and let us help you select the perfect instrument for you.
Perfect Your Summertime Clothing Colors Using Instruments From HunterLab

  1. “Food Fraud Buzz Over Fake Manuka Honey”, August 26, 2013, http://www.theaustralian.com.au/news/world/food-fraud-buzz-over-fake-manuka-honey/news-story/e58d5d067d615b20c71bd04864f4397c
  2. “New Tests Confirm New Zealand Manuka Honey is For Real”, May 16, 2017, http://www.stuff.co.nz/business/farming/92636284/new-tests-confirm-new-zealand-manuka-honey-is-for-real
  3. “Color Grading of Honey”, 1986, http://www.fiitea.org/foundation/files/1986/S.%20AUBERT,%20M.%20GONNET.pdf
  4. “Honey Color Facts: Plus Our Favorite Honey”, December 2, 2013, http://besthoneysite.com/honey-color/
  5. “Marketers Wax Enthusiastic Over Bees and Honey”, October 15, 2013, http://www.nytimes.com/2013/10/16/business/media/marketers-wax-enthusiastic-over-bees-and-honey.html
  6. “United States Standards for Grades of Extracted Honey”, May 23, 1985, http://www.honey.com/images/downloads/exhoney.pdf
  7. “The Color of Honey”, June 22, 2010, https://honeybeesuite.com/the-color-of-honey/
Measuring Color and Haze in Liquid Pharmaceuticals Protects Patient Health

 

The color of liquid medications can have a big impact on how patients perceive, experience, and take medications. | Image Source: Pexels user Pixabay

Last winter, in the midst of my worst cold of the season, color-coded mediation led me astray. Dazed, I reached into my medicine cabinet and popped a blue liquid-filled capsule out of its packaging, ready to get some symptom relief and finally be able to rest. But that’s not what happened. Rather than falling into a deep sleep, I felt jittery with unwanted energy and paced around my house in the early hours of the morning, unable to stay still. Sure, my cold symptoms were held at bay, but what I needed was rest. Confused, I returned to the medicine cabinet and took a closer look at the box of cold medicine. It was then that I saw the blue capsules were for daytime while the pale yellow capsules were for nighttime, the polar opposite of my feverish assumptions. That sleepless night made me appreciate the value of logical and correct medication color more than ever before.

 

Since the 1970s, pharmaceutical companies have increasingly recognized the value of color in medications. | Image Source: Pexels user freestocks.org

The Value of Color in Pharmaceuticals

 

Until the mid-20th century, virtually all pill pharmaceuticals were white and all liquid pharmaceuticals were clear.1 But in 1975, the introduction of soft gel capsule technology made it possible to produce vibrantly colored medications for the first time and the idea took off. Today, pharmaceuticals, particularly liquid forms, come in an endless array of hues.

 

This emergence of pharmaceutical color isn’t just about arbitrary aesthetics. The color of medication matters and it matters in multiple ways:

 

Shaping Patient Perception

The color of medication can have a significant impact on the expectations consumers have regarding efficacy and performance. A 2015 study published in Food Quality and Preference found that white headache medications were perceived as the most effective by respondents, while light green medications were assumed to be the least effective. Respondents also reported that they perceived red and light red pills to be the most stimulating and they expected light blue pills to have the most pleasing taste. Some also reported that they expected red and blue pills to be harder to swallow than pills of other colors.2 As such, pharmaceutical companies are increasingly interested in creating medications that enhance consumer perception through the creative use of color.

 

Shaping Patient Experience

Not only does the color of medication affect people’s expectations, it also affects what they actually experience. As Jill Morton of Color Matters notes, “Patients respond best when color corresponds with the intended results of the medication.” For example, blue sleep medications help people achieve better quality sleep than medications of other colors, even if the ingredients are identical. Thoughtful selection of medication color as it relates to each specific medication is, therefore, paramount to optimize efficacy and create the best possible user experiences.

 

Promoting Adherence

Colors can act as visual shortcuts to identifying pharmaceuticals, helping people who have difficulties reading labels or who are dealing with multiple medications easily pick out a particular medication on sight. As the population ages and comes to depend on a growing number of daily medications, pharmaceutical companies are increasingly implementing color-coding strategies in both packaging and in the design of the drugs themselves to facilitate adherence and minimize medication errors. Researchers have also found that maintaining consistency between brand name and generic medications is critical to decreasing rates of discontinuation, putting new pressure on manufacturers of generic drugs to prioritize the aesthetics of their products.[3. If Color or Shape of Generic Pills Changes, Patients May Stop Taking Them,” July 14, 2014, https://www.washingtonpost.com/national/health-science/if-color-or-shape-changes-patients-more-likely-to-stop-taking-much-needed-drugs/2014/07/14/60e687f4-0b8c-11e4-8341-b8072b1e7348_story.html ]

 

syringe with blue liquid
HunterLab’s Vista allows for simultaneous color and haze measurement, simplifying quality control procedures. | Image Source: Flickr user Sean Michael Ragan

 

Simultaneous Color and Haze Measurement

 

Liquid medications present opportunities for rich colors that enhance patient perception, experience, and adherence in ways we could not have imagined a century ago. The important roles served by these colors mean that color monitoring must be a critical component of quality control efforts throughout the manufacturing process. Spectrophotometric color measurement offers the best way of analyzing color behavior at all points of production quickly and easily. By capturing objective color data and instantly alerting you to unwanted color variation, you can ensure that only correctly colored pharmaceuticals are released into the marketplace. As a growing number of consumers come to rely on color-coding, this is essential for protecting public health and preventing medication errors as well as fortifying brand image.

 

But color is only part of the equation when it comes to liquid pharmaceuticals. Monitoring turbidity, or haze, is critical for creating medications with correct formulations and desirable physical attributes. Not only can the presence of haze point to a potentially dangerous process error such as incomplete dissolution, it can also compromise consumer confidence and cause confusion for those who rely on visual identification. As such, haze measurement is an essential part of quality control protocols. Today, advances in spectrophotometric technology allow color and haze to be analyzed together in a single measurement using revolutionary instruments such as HunterLab’s Vista. By measuring color and haze simultaneously, you can avoid time-consuming double measurements and reduce product waste. This is particularly important for those working with highly valuable, rare, or potentially hazardous materials, helping you minimize the number of samples necessary for accurate analysis and limit operator exposure to potent chemicals.

 

HunterLab Quality
HunterLab has been a leader in the field of spectrophotometry for over 60 years. Our renowned line of products has been developed in response to the needs of our customers in the pharmaceutical industry, helping us ensure that our technologies can be readily integrated into your quality control program. With the release of the HunterLab Vista, we are entering a new era of liquid color and haze measurement, opening up the door to more rapid, simple, and economical analysis. In doing so, we expand your ability to make innovative use of pharmaceutical color while safeguarding consumer health. Contact us to learn more about our comprehensive range of spectrophotometers, customizable software packages, and world-class customer support services.
Perfect Your Summertime Clothing Colors Using Instruments From HunterLab

  1. “The Color of Medications”, http://www.colormatters.com/color-symbolism/the-color-of-medications
  2. “Assessing the Expectations Associated with Pharmaceutical Pill Colour and Shape”, June 2015, http://www.sciencedirect.com/science/article/pii/S095032931500138X
Spectrophotometric Monitoring of Color Consistency Solidifies Brand Identity
camera
Choosing the right color palette for your brand can be vita l to your success. Image Source: Flickr user peace6x

 

Color is all around us. It is part of virtually everything we see, informing our experiences day in and day out in. And on January 20, 2017, the politicians in Washington D.C. wanted to inform your experience of them. Trump in his red tie, Obama with his in blue, Hillary, Ivanka, and Tiffany in white, Michelle in crimson, and, of course, Melania in her sky blue. These colors weren’t accidents, but deliberate choices driven in part by the desire to shape public perception using color psychology.

 

“Colors and brands are very important [for all politicians],” says Dr. Dong Shen, professor of Fashion Merchandising and Design at California State University.1 Shen explains that the inaugural color choices, particularly for the women, were designed to tap into our shared sense of meaning, one that goes beyond red for Republican, blue for Democrat. Melania’s blue, she believes, symbolizes loyalty and trust, while Michelle’s red reflects fire, passion, and sensitivity, although her choice of a more subdued crimson shade signals that she is no longer center stage. Purity was the message sent by Ivanka and Tiffany’s whites while Hillary’s was one of healing. Through their respective shades, these women invited us to see them in particular ways, introducing (or re-introducing) us to their “brands” and sending us messages about their values and identities.

 

Clothing, however, can be changed. If you make a misstep you can just try something new next time. Choosing the right color to introduce a product brand is a far more complex operation, which is why companies go to great lengths to select appropriate color palettes for their brands. “Color is one of the biggest factors that marketers and designers take into account,” says Rose Leadem of Entrepreneur. 2 Color allows you to speak for your product without saying a word, offering a way of instantly “conveying meaning and message” to connect to consumers on a deeply visceral level.3 And deploying color psychology is no easy task; as Leadem explains, “Perception of color can change based on a person’s age, gender, personality, income, and other factors, which means marketers must understand who their target audience is and how they wish the brand to be perceived.” This often means countless hours of research, design work, and testing in order to come up with the right shades.

 

But choosing the perfect color palette for your brand is only the first step. The colors chosen must be reproduced exactly again and again in order to create a cohesive brand identity and fortify that identity through repeated exposure to consumers. Spectrophotometric color measurement is a vital part of that process, ensuring perfect color matching regardless of the material with which you are working.

 

The Importance of Reproduction

 

Color is widely recognized as the most important aspect of a product’s branding materials, as it is the one that is most readily remembered by consumers and instrumental in guiding consumer perception. Iconic brands have perfected this art by creating a strong color scheme. They do this by exposing the public to that scheme again and again and again, until the colors and brands become interchangeable. McDonald’s, Coca-Cola, and Tiffany & Co. have all been wildly successful in this endeavor and can be identified based on color alone in the same way we can identify a Louboutin shoe by its red sole. The colors themselves have become icons, standing in for the brand as a whole – it’s not just red, it’s Coca-Cola red. It’s not just robin’s egg blue, it’s Tiffany blue. Recognizability, then, depends on exact color reproduction to cement the relationship between the product and color in the minds of both current and potential customers. In order to strengthen that connection and encourage instant identification, your chosen shade must be represented each and every time the consumer encounters your product regardless of what form that encounter takes, whether it’s on product labeling and packaging, advertising, or signage.

 

coke bottles
Spectrophotometric color measurements gives you the highest level of insight into color behavior, allowing you to match color and appearance in disparate media. Image Source: Flickr user SoxFanInSD

 

Creating Color Consistency

 

Historically, color consistency has primarily been evaluated via visual inspection. However, the human eye is inherently a subjective evaluator, prone to inaccuracies that compromise the ability to maintain truly consistent color. Spectrophotometers, however, offer a sophisticated, objective way of capturing color information without the vulnerabilities inherent to the human eye. As such, companies across industries rely on spectrophotometric instrumentation to monitor color behavior throughout the production process, ensuring batch-to-batch and lot-to-lot consistency.

 

But what is truly remarkable about spectrophotometers for the purpose of branding isn’t just that they measure color in one type of material. Rather, spectrophotometers are capable of measuring color and appearance in all material forms, allowing you to create color consistency across media with disparate optical properties. From flat, matte papers to translucent plastic films, spectrophotometers offer a range of optical geometries to ensure you have the ability to analyze color quality and product appearance across your entire product line and throughout your packaging and marketing materials. Sophisticated software packages like Easymatch QC facilitate this process, giving you the data you need to produce exact color matches and instantly alerting you to unwanted variations. As a result, you are easily able to quarantine any defective product that may compromise your color/brand strategy and prevent its release into the marketplace.

 

The HunterLab Difference

 

HunterLab has been a pioneer in the field of color measurement for over 60 years. Throughout that time, our advanced technologies have helped our customers create and solidify their brand identities through smart and consistent use of color. Today, we offer a comprehensive range of spectrophotometers capable of analyzing virtually any material performing in even the most challenging conditions. Contact us to learn more about our renowned instruments, customizable software packages, and world-class customer support services.
Perfect Your Summertime Clothing Colors Using Instruments From HunterLab

  1. “The Color Psychology Behind Inauguration Fashion”, January 21, 2017, http://www.abc10.com/news/local/the-psychology-behind-behind-inauguration-fashion/389407249
  2. “The Role of Color in Branding”, December 10, 2016, https://www.entrepreneur.com/article/286324
  3. “Color & Branding”, 2012, https://www.colormatters.com/color-and-marketing/color-and-branding
Reading the Leaves: Spectrophotometers Can Identify Oxidation Stages of Tea Leaves

I’m from Massachusetts, where we pride ourselves on having started the Revolution. Among the most prominent and colorful of Boston’s escalating acts of disobedience was the Boston Tea Party. Like it is today, tea was huge deal back then. It was consumed on a daily basis by an overwhelming percentage of colonists. In Boston, a thriving port, the importation of tea was big business. So, when the King imposed a hefty new tax on tea, it not only disrupted the lives of everyday colonists, it threatened their livelihoods.

 

In revolt, Bostonians blockaded the harbor and refused to allow the unloading of tea. Dressed as natives, a group of patriots boarded three British ships and dumped around 92,000 pounds of tea into the harbor. These actions energized Boston but angered the King. Tensions rose. Soon, in Lexington, a shot was fired that was heard around the world. The founding of our nation was steeped in tea.

 

Ship in harbour
No taxation without representation! Image Credit: Flickr User Lee Wright (CC BY 2.0)

 

Spectrophotometers Assess the Oxidation of Tea Leaves

 

In today’s world, more than coffee, more than beer, more than Coca-Cola, tea is King (it sure isn’t George III anymore). Having played a major role in global affairs for centuries, tea still thrives as the second most consumed1 beverage in the world, behind water. The resulting enormous volume of tea grown, imported, and processed requires highly efficient processes. Fast, reliable quality control is essential for manufacturers, to keep deliveries on time and up to specification. That’s why manufacturers often rely on spectrophotometers to quickly and accurately assess the color of their tea leaves.

 

Manufacturers measure the color of their leaves because color is indicative of the oxidation stage of a tea leaf. The oxidation of a tea leaf2 indicates of the final properties of a cup of tea, including color, flavor, and caffeine content. This is because all tea is made from the leaves of the same plant, Camellia sinensis. Green tea, black tea, white tea, and red tea are only differentiated by the preparation of the leaf.

 

So, manufacturers can reliably distinguish types and batches of tea leaves by measuring their color. This ensures that their batches have been processed correctly. Finally, it guarantees consistency batch to batch over commodity-scale quantities and decades of production.

 

Without accurate, objective analysis, manufacturers will lose revenue. Batches of tea that fail to meet client standards for consistency and quality can be rejected. Repeated failures can cause clients to begin looking for other manufacturers. Likewise, failing to detect a processing error, such as a mistake in drying temperature or timing, can damage entire batches. It’s unlikely any single error will be harmful to a manufacturer as losing 46 tons of tea, around $1.7 million in today’s dollars, was to the British East India Company. Over years, a manufacturer’s small losses can easily add up to a greater total amount of lost tea than in the Boston Tea Party. To avoid this, manufacturers use spectrophotometric analysis to eliminate measurement errors. It’s easier than going to war.

cups of tea
Different levels of oxidation result in different types of tea. Image Credit: Flickr User H. C. (CC BY 2.0)

 

Instruments Improve on the Human Eye in Tea Leaf Color Quality Control

 

These crucial color assessments are most often performed by instrumental analysis. More ably than the human eye, spectrophotometers assess color by measuring the light reflected from objects. Tea color quality control requires discerning slight differences in color for extended periods of time.  Unlike the human eye, whose objectivity is variable, spectrophotometers perform objective, repeatable measurements based on controllable instrumental variables. As a result, they are more reliable than human observers. For accurate color measurements of tea, we recommend using directional 45°/0° reflectance geometry.

 

Instead of relying on comparisons to printed scales, spectrophotometers allow manufacturers to compare tea leaves to digital tolerance standards. These standards can be programmed into the machine itself. Portable instruments can take many readings each minute, and rapidly determine whether the tea meets standards. These readings can be assessed separately or averaged together. The speed and ease of this method have allowed manufacturers to easily incorporate it into their processes without sacrificing efficiency.

 

HunterLab has been building spectrophotometers for over 65 years. In that time, they have worked extensively with the tea industry, and have developed measurement devices ideally suited to the needs of tea manufacturers. To find the perfect solution or upgrade for your manufacturing process, contact the experts at HunterLab.
Perfect Your Summertime Clothing Colors Using Instruments From HunterLab

  1. “Tea Fact Sheet,” 2017, http://www.teausa.com/14655/tea-fact-sheet
  2. “What Is Oxidation?” 2012, https://www.worldoftea.org/tea-leaves-oxidation/
Coffee Roasters Can Use Spectrophotometers to Determine Color on SCAA Roast Scale

My sense of taste lacks distinction. I get the broad tastes alright—sweet, bitter, savory, sour—but after that, it’s all greek. As a result, I tend to doubt that the differences in flavor the informal sommeliers of my acquaintance swoon over are as strong in the mouth as they are in their minds. So, when my friend told me he could taste the difference between cups of coffee so distinctly that he could match a series of cups to their respective beans, I said, “prove it.” That weekend, we brewed eight cups of coffee from eight different roasters. I kept a bean from each bag for him to match the cup with. After a short sip from each cup down the line, he puzzled for a minute, tried a few cups a second time, then matched the cups to the beans. He got them all right. “How did you do that?” I asked him after I settled the cash side of our wager. He was, of course, only too happy to tell me—at length.

 

coffee beans
The color of coffee gives clues to its flavor profile. Image credit: Flickr user Olle Svensson (CC BY 2.0)

 

The Color of Coffee Can Display its’ Flavor Profile

 

The color of a coffee bean can say a lot. Different colors come from different roast durations. Minute differences in roast can have outsize effects on coffee’s flavor, acidity, body, and aftertaste1  So, determining the exact color of a coffee bean after a roast can tell a manufacturer a great deal about what the coffee will taste like.

 

For the average coffee drinker, telling a coffee’s attributes from the color of its roast is a neat party trick,  It’s a way to show off to their friends that they’ve read about the eight strictly defined SCA color grades, Very Light to Very Dark—a way to build up self-esteem. In short, the stakes are low. For a manufacturer, however, the SCA color grades are their brand. It’s why people buy their coffee. Keeping color consistent is essential to retaining customers. In short, the stakes are high.

 

unroasted coffee beans
Coffee beans are green, and without much flavor, before being roasted. Image Credit: Flickr User Jessica Spengler (CC BY 2.0)

 

 

SCAA Scale Is Used to Classify the Colors of Coffee

 

That’s why coffee roasters rely on the SCCA scale to rate the color of their beans during the production process. By matching the color of a bean to a printed sample, they can determine within a reasonable margin of error whether each batch has been properly roasted.

 

This method has its drawbacks, however. To start, exact color matches are difficult between textured materials. The differences in surface texture of coffee beans and vinyl printouts affect human color perception. Also, human beings are inherently subjective at assessing color. Color perception differs between different observers, or even between the same observer at different times of day. Sample preparation and measurement can cost manufacturers valuable time if they are not done properly. Saving data from tests takes up even more time, as it must be initially recorded and then entered into one or more data storage systems.

 

Spectrophotometers Can Measure Coffee on the Agtron Scale

 

To correct this, many coffee roasters have turned to using the HunterLab ColorFlexEZ Coffee spectrophotometers to determine the color of their roasted beans. These instruments measure color with extreme precision and can be delivered programmed to display their results according to the SCAA scale. HunterLab even invented the HCCI (Hunter Color Coffee Index), with input from roasters worldwide, to improve upon the SCAA scale.  By using instrumental measurement, they eliminate the subjectivity inherent in human observers. The data can be transferred easily from these machines to a central location, such as a hard drive or the cloud. The machines take fast, reliable measurements, and samples can be quickly prepared, and a single measurement can report the SCAA number, Roast Classification, and HCCI number.

 

HunterLab has over 65 years experience developing spectrophotometers for industry use. Working extensively with coffee roasters, we’ve developed the ideal instrumental solution for coffee color analysis, the ColorFlex EZ Coffee Spectrophotometer. To learn more about how the ColorFlex can help keep your roasts consistent, contact the experts at HunterLab today.
Perfect Your Summertime Clothing Colors Using Instruments From HunterLab

Color Perception Meets Consumer Desires: How to Set the Mood with the Hues of Food

Color perception is the link between how the human eye perceives color and the way the brain processes that information to affect our moods and choices. Scientific research in the area of color perception has revealed that there is a great variation between how each individual sees and views color, yet our brains continually process this information in relatively the same way. The way that humans perceive color plays an important role on the choices we make, especially when it comes to our food selections.

Continue reading